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Abstract—In this paper curved thermal crack growth in self-stressed brittle solids subjected to well-
defined temperature fields has been studied. The resulting boundary-value problems of the stationary
plane thermoclasticity are solved by means of the finite element method. Moreover, by applying an
appropriate crack growth criterion based on the total energy release rate of a quasistatic mixed-
mode crack extension the further development of thermal crack paths starting at the external
surfaces of disk-like two-phase compounds with circular cross-sections could be predicted. Several
specimen geometries consisting of different material combinations have been investigated by con-
sidering uniform temperature changes and by applying the relevant methods of fracture mechanics.
Further, the corresponding fracture mechanical data like strain energy release rates and stress
intensity factors, respectively, have been determined by additional considerations of the influence
of inner stress concentrators onto the paths of quasistatic extending thermal cracks. The comparison
of those theoretical investigations with associated cooling cxperiments shows a satisfying agreement,
Finally, the influcnces of additional local temperature changes onto the prospective thermal crack
paths have been studied by means of the fracture criterion mentioned already as well as by using
the finite clement method. Thereby the numerical results have shown some remarkable effects of
interference between the local temperature changes located in the vicinity of thermal crack tips and
the further crack paths.

L. INTRODUCTION

The crack path prediction of extending thermal cracks in dependence on the geometrical
configuration of a sclf-stressed nonhomogencous solid, as well as of the applied thermal
loading, poses an interesting problem in today’s fracture mechanics research. There exists
experimental evidence for the appearance of different failure mechanisms in thermally
loaded composite structures, like curvilinear matrix and interface cracks, respectively, where
these thermal cracks arise mostly under mixed-mode loading conditions. Therefore, the
study of thermal crack growth in nonhomogenecous materials is necessary for the assessment
of the strength of composite structures because modern composite materials are often
subjected to variable temperature fields, for example in aircraft and space travel technology.
Moreover, from the fracture mechanical standpoint curved or kinked cracks were studied
in the past by several authors either as interface cracks along circular inclusions (England,
1966 ; Toya, 1974 ; Herrmann, 1983), or in connection with the asscssment of existing crack
propagation criteria (Cotterell and Rice, 1980 ; Bergkvist and Guex, 1979 ; Nemat-Nasser,
1980 ; Palaniswamy and Knauss, 1978). Furthermore, Piva and Viola (1980) gave a com-
prehensive survey of the state-of-the-art concerning the interface crack problem, discussing
also the cancellation of the oscillatory anomalies of the elastic stress and displacement ficlds
ncar the tip of an interface crack as well as the establishment of an appropriate crack
propagation criterion,

The thermal interface crack problem was studied in the past for example by Brown
and Erdogan (1968), Bregman and Kassir (1974), and Srivastava et al. (1977). These
authors considered two semi-infinite elastic solids with different thermoelastic material
properties and having a crack situated along the interface. Further, circular cracks in the
interfaces of bounded thermally loaded fibrous composites were investigated by Herrmann
and Strathmeier (1983) and Herrmann and Ferber (1989). In addition, curved thermal
cracks in glasses have been studied in the past by Hieke (1960), Hieke and Loges (1966),
Blauel (1970), and Karihaloo and Nemat-Nasser (1981). Finally, the crack path prediction
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of extending thermal cracks in self-stressed glassy compounds in dependence on the geo-
metrical configuration as well as on the applied thermal loading has been considered in
several papers by Herrmann and Grebner (1982, 1984a, 1985) and Herrmann and Dong
(1990).

In this paper, curvilinear thermal cracks are considered extending in disk-like two-
phase compounds due to well-defined thermal stress fields caused by either uniform or non-
uniform temperature changes. The cross-sections of several two-phase solids consisting of
homogeneous, isotropic and linearly elastic materials with different thermoelastic properties
varying discontinuously at the straight interface [” from the values £/, v\, 2" of the region
I to the values EVV, v 4" of the region /I (£, Young's modulus; v, Poisson’s ratio; x,
linear coefficient of thermal expansion), and are shown in Fig. 1 together with the cor-
responding geometrical parameters. Further, the associated thermoelastic material prop-
erties of the two-phase compounds from Fig. | are listed in Table 1.

Cooling experiments were performed for a variety of glassy compounds (Grebner,
1983) and other two-phase composite structures showing the initiation and extension of
thermal cracks for certain material combinations. Those experiments gave crack paths
following in a reasonable agreement special principal stress trajectories belong to the
existing thermal stress fields in the associated uncracked two-phase solids. The temporal
development of thermal stress fields in the associated uncracked two-phase solids. The
temporal development of thermal crack growth in different-shaped two-phase glassy com-
pounds glued together at a temperature near the transformation point of the optical glasses
and afterwards subjected to a steady cooling process has been discussed in some detail in
a review article by Herrmann (1987).

In this paper, additional theoretical and experimental results are given concerning the
initiation and cxtension of curvilinear thermal cracks in self=stressed metal/glass, plastic/
glass and plastic/plastic bimaterial specimens. Thereby an appropriate crack growth

ALUMINUM
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{c) (d)

Fig. 1(a)~(d). Cross-sections of disk-like two-phase composite structures.
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Table 1. Material properties of the components of two-phase composite structures

Material BK? ZKS PL-1 Aluminum ABS Araldite B
(Glass)  (Glass)  (Plastic) (Plastic)

Young's modulus

E [Nmm-] 80148 68180 2880 72000 3000 3500
Poisson's ratiov [1]  0.211 0.241 0.360 0.340 0.350 0.370
Linear coefTicient of
thermal expansion 7.1 8.7 70.0 239 950 45.0

a [10% K-}

criterion has been established and applied for the prediction of the further development of
thermal cracks initiated in these self-stressed two-phase compounds. Besides, the influence of
a nonuniform temperature distribution (produced by additional local temperature changes)
onto those thermal crack paths has been studied in some detail.

2. FORMULATION AND SOLUTION OF BOUNDARY-VALUE PROBLEMS FOR
UNCRACKED AND CRACKED DISSIMILAR MATERIALS

2.1, Principal stresy trajectories in thermally loaded two-phase solids

The determination of fracture mechanical data governing the quasistatic growth of a
curvilincar thermal crack lying in one of the segments of a self-stressed two-phase compound
has been performed by applying the concepts of lincar clastic fracture mechanics. By
assuming the existence of a plane stress state in the cracked composite structure as well as
temperature-independent thermoclastic material propertics £Y' v o (S = [, 1), the
following mixed boundary-value problem of the plane thermoclusticity has to be solved

Jy
(’:/./ - 0 (I)
all! = 24N+ AN, — (BAY 4 20 AT, )
. _I j . . -
e = +uy s (L j=1,2), (3)

with ATY) = TY'~T,: J = I, Il where T, represents the temperature of the unstressed
initial state. Moreover, the boundary conditions

al'm, =0, (i,j=12) 4)
have to be fullilled where n means the unit normal vector with respect to the external
boundary S and to the two crack surfuces S ¥ w S, respectively. In addition, the continuity
conditions

i

ulh = ot (5)

7
v (6)

th

'

a/'n,=a
have to be satisfied at the discontinuity arca I” where in this case n means the unit normal
vector with respect to the material interface T,

By introducing Airy’s stress function £, the boundary-value problem (1)-(6) can be
transformed into a boundary-value problem of the bipotential theory. By making use of
Muskhelishvili’s method of complex potentials (Muskhelishvili, 1971) a closed-form solu-
tion of this boundary-value problem concerning the two-phase composite structures from
Fig. 1 with different uniform temperature distributions in both segments / and /7 was given

for plane strain conditions by Herrmann (1987).
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On the contrary, by expressing the formulated mixed boundary-value problem of the
plane thermoelasticity [eqns (1)-(6)]. in displacements alone one obtains the following
governing equations for the thermally loaded two-phase solids:

“U)Vlufl)+(AU)+NU))61‘1)_(3,‘“(1)+2“U))1(1)(AT(I))J =0, (7)

where ¢ = u!?"; J = I. Il and with the boundary conditions

Li
(A8, + 1 () + ul) — (34 + 202 ATYS, Jn, = 0 (8)
and continuity conditions at the material interface I’

w'h = v 9)
[).'“("”(5,,+;lm(ll,%)+ll“')—(3)~”)+2;1‘”)(2'”AT1”(5,,]H,

1.
— [/‘_tll)e(ll)éij+l‘(ll)(ul(jl) +u/(.£l) _ (3;_(”) +Zu"”)q"”AT"”(S,,]n,. (IO)
with (i, j = 1. 2).
In the case of a uniform distribution of the temperature changes A7*’ in both regions
p g g
[eqn. (7)] turns into a simpler form according to
VD + (A 4 e = 0, (n

with the following definition of the total displacements u

u' =l +oaATY x,, (12)

where 17 represent the displacements caused by the self-stresses whereas 2’ ATy, arce

the displacements caused by the temperature changes ATY J = 1, I1.
Morcover, the displacements 17" obey the following partial differential cquation
p VA (A 4 ) = 0. (12a)
Further, the self-stresses are simply expressed as follows:

J P Jy s ) J /
o) = A" S, + u(ull +ugt). (13)

Therefore, the boundary and continuity conditions (8)-(10) read

(A5, + ! (w4 us ) n, = 0 (14)
WD — 2™ = [ AT — g DAT "y, (15)

N ¢ N 1
[,_1/)6011)0” +#(l)(u‘ajl) +l‘/ﬂ.:ll)]n/ — [']‘(l/)en(ll)‘)“ +}l“”(ll:’_;”) +ll:,‘ “)l”/- (16)

In accordance with eqn (11) as well as eqns (14)-(16) a series of conclusions cian be drawn :

(1) The stresses in both segments 7 and /1, respectively, are directly proportional to
["ATY" 2" AT"]. If this difference equals zero then there exist no thermal stresses at all
in both segments of a composite structure, although certain lincar displacements appear to
be corresponding to the free expansion of the compounds.

(b) All different combinations of AT and ATY” with corresponding values of
[x""ATY" —2'"AT"] lead to the same thermal stress fields in the composite structures
with thc same geometrical configurations and material combinations. For instance, the
combinations AT = AT = AT and AT =0, AT = (2" —2"]AT/2""" as well as
ATY = [2"" —x"AT/a'?, ATY" = 0 correspond to the same thermal stress field. This
means that once the thermal stress field in a two-phase solid subjected to a homogeneous
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(a) (b)

Fig. 2(a) and (b). Principal stress trajectories in the cross-sections of uncracked and cracked self-
stressed two-phase composite structures.

temperature field has been determined, then the stresses in the same composite structure
under any combinations of two different uniform temperature changes in the two segments
are also known.

Moreover, Fig. 2a gives the principal stress trajectories in the circular cross-section of
a doubly connected thermally loaded uncracked two-phase composite structure (material
combination: BK7 (region [)/ZKS (region /1)) containing an inner stress concentrator
(holc). In this case the gcometrical parameters werc chosen as R = 16.5 mm, r = R/10,
¢ = 70° and the applied uniform temperature distribution reads AT = AT = AT =
—560°C. L

Thereby the principal stress trajectorics of Fig. 2a can be gained by a graphical
integration procedure of the following ordinary differential equation:

za.cy d)’+ {(Gr.r - a_vy) ; \/(Uyy - ax.r)z +46ﬁy} dx = 0' (I 7)

where the stress components have been taken from the corresponding solution of the
boundary-value problem of the stationary plane thermoelasticity [eqns (1)-(6)]. Further-
more, Fig. 2a shows the existence of two orthogonal sets of principal stress trajectories
(solid lines: tension stresses ; dotted lines: pressure stresses) which embrace two singular
points on the symmetry line of the cross-section.

Further results for thermally loaded glassy compounds with quadratic and hexagonal
cross-sections, respectively, have been obtained and can be found in the references (Herr-
mann, 1987; Herrmann and Grebner, 1984). Besides, a comparison of those theoretically
determined self-stress states with corresponding fields of experimental principal stress tra-
jectories in stable uncracked bimaterial specimens (Grebner, 1983 ; Herrmann and Grebner,
1984) obtained by using the method of photoelasticity showed a very good coincidence.
Moreover, the theoretically as well as the experimentally gained fields of principal stress
trajectorics indicate very clearly that for the cases 2¢p # 7 only one principal stress trajectory
of the two existing sets runs from one intersection point of the interface I” with the external
boundary S to the opposite intersection point. Furthermore, cooling experiments performed
for different-shaped bimaterial specimens have indicated that for so-called unstable material
combinations a curvilinear thermal crack starts with a special initial velocity from onc of
the two intersection points and runs with decreasing velocity to the opposite intersection
point, thereby using this principal stress trajectory mentioned above as a guide linc. Besides,
the experimental as well as the theoretical thermal stress fields show for the casc 2¢ = =
the existence of two principal stress trajectories (one in each semicircle) running into the
two intersection points. But the cooling experiments showed that one crack only arises,
starting again from one of the two intersection points. Further results concerning curvilinear
thermal crack growth in disk-like two-phase compounds are given in Fig. 6. Finally, Fig.
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2b shows the field of principal stress trujectories in the cross-section of a thermally cracked
disk-like bimaterial specimen (material combination: ABS (region /)/Araldite B (region
II)). It can be stated that in the case of uniform cooling of an unstable two-phase compound
a thermal crack arises on that side of the material interface where Min [x7', J = I, H] is
valid. Furthermore, the theoretically obtained principal stress trajectories of Fig. 2b were
confirmed by corresponding experimental thermal stress fields gained by using the method
of photoelasticity (Ferber et al., 1990).

3. CRACK PATH PREDICTION AND CALCULATION OF FRACTURE MECHANICAL DATA
CONCERNING THERMAL CRACKS ARISING IN SELF-STRESSED TWO-PHASE
SOLIDS SUBJECTED TO UNIFORM TEMPERATURE DISTRIBUTIONS

3.1. Crack growth criterion

A theoretical crack path prediction in thermally loaded two-phase composite structures
requires the solution of different mixed boundary-value problems of the plane thermo-
elasticity according to eqns (1)-(6) where the boundary conditions (4) have to be numeri-
cally fulfilled at the stress-free boundaries S (external surface) and S * v S ~ (crack surfaces).
respectively. Because of the complicated shape of the stress-free boundary of such a cracked
two-phase solid, a numerical calculation was performed by applying the finite element
method in order to predict the curvilinear crack path by means of an appropriate crack
growth criterion. In the past several directional criteria for crack propagation in brittle
solids have been proposed. such as the eriteria of principal stress (Erdogan and Sih, 1963),
minimum of strain energy density (Sih, 1973, 1974), maximum of strain energy release rate
(Hussain er al, 1972 Strifors, 1974). Thereby these eriteria require the knowledge of the
near-tip stress and displacement ficlds in the vicinity of the original crack tip characterized
for a general plane loading situation by the stress intensity factors Ky and Ky, respectively.
Furthermore, the application of these criteria to a cracked brittle sohd delivers equations
for the determination ol the angle 0 describing the direction of further crack growth (cf.
Fig. 3). Investigations performed in Bergkvist and Guex (1979) showed in the case of small
angles 0 the extstence of an approximate solution,

0= —2K,/K, (18)

valid for all projective cruck propagation criteria. Based on this important result finite
clement calculations were performed concerning the theoretical prediction of a curvilinear
thermal crack path in a two-phase glassy compound. Thereby a standard finite element
program was used by applying the substructure technique as well as by using triangular
linear strain six-node elements. Further, the numerically determined crack puth showed a
fairly good agreement with experimental results obtained by appropriate cooling exper-
iments (Herrmann, 1987 ; Herrmann and Grebner, 1984u).

Fig. 3. Global and local coordinates at a kinked crack tip.
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Fig. 4. Finite element mesh and global coordinates at the crack tip with a new crack lengthening Aa.

In this paper. by combining the essentials from the principal stress and the maximum
energy release rate criterion, an appropriate crack growth criterion based upon the numeri-
cal calculation of energy release rates at crack tips has been proposed. It has been shown
already in Herrmann and Grebner (1984a) that the determination of strain energy release
rates at the tips of quasistatically extending curvilinear thermal cracks in self-stressed two-
phase solids can be performed applying a method described by Rybicki and Kanninen
(1977). This method is based on the evaluation of Irwin’s crack closure intcgral :

Gla,0) = G (a,0) +Gyla, 0) = llm f [G4a(r. ) dy(r, )] dr

<0 2Aa

AI.,".., 5Ai f [G0(r.0) i, (r,0)]dr. (19)
Here the quantitics g4, 6,4 in cqn (19) represent the ncar-tip stresses in the local coordinate
system at the crack tip prior to crack extension, whereas the quantities 4,, 4, stand for the
corresponding normal and tangential displacements between opposite points of the crack
surface after crack extension and Ag represents the crack lengthening. By using a finite
clement mesh according to Fig. 4 a numerical calculation of the average energy release rates
G, G,. G, related to the global coordinate system x, y as indicated can be performed
where the displacements along the new crack surfaces are approximated by a quadratic
interpolation function in the related finite elements, i.e. usually 8-node isoparametric or 6-
node triangular elements. The corresponding formulae read

A
G, <u+ —;.0) = Gla—a+Aua,0) = Asin®>0—Bsin 0 cos 0+ Ccos’ 0 (20)

A Aa A
G( ~£ 0) G,<a+ 5 ()>+Gu((1+ :;({.0>=A+C (22)

A ] - - b
G, (a+ -5‘1,0) G la—=a+Aa,0) = Acos* 0+ Bsincos0+Csin” 0 21)

with

A= ‘2—"‘A‘— [F’(ll C)+Ft(“l\’_“t)] (23)

l
B = 5 [FIGt —ul) + Pl —ul) + Fl(ut ~ul) + Fi(ut — ub)] (24)
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]

C =3

[Fl(us —ul)+ Fi(u? —u)] (25)

where F'., F, (i = f, h) denote the components of the nodal forces in the global coordinate
system x, y before the crack extension Aa. and ', u, (i = e, f. g. h) stand for the components
of the corresponding nodal displacements of the new crack surfaces after crack extension.

Now by applying the eqns (20)—(22) the energy release rates G, G,, G, can be calculated
if the new crack extension direction 8 is known. However, only latter quantity is wanted.
Therefore. in the following an approximate method for the determination of the new crack
propagation direction is proposed. based on the physical mechanism of brittle fracture.
Thus, it is assumed that the new direction of crack lengthening Aa is given by the direction
in which G,; = 0 holds true and crack extension occurs for G, = G,, (critical crack extension
force). Based upon this criterion and the numerical calculation of the energy release rates
G, (j = I, II) the following iteration scheme concerning the determination of the new crack
extension direction could be established.

Step0: Select a possible direction 6* of crack propagation

Step | : Let § = 8* by means of arranging a local finite element mesh in the vicinity of
the crack tip and calculate with this preliminary propagation angle a set of
coeflicients 4, B, C according to eqns (23)-(23) as well as the corresponding
values of the energy release rates, eqns (20)-(22). Now, if G, = 0 is valid, then
0* represents already the desired new crack extension direction and the iteration
is finished. But G, may not be zero; then one has to add

Step 2: By taking G, = 0 it follows that

Gu(h) = A cos’ 04 Bsin0cos 1+ sin’ ) = 0. (26)

From eqn (26) a new angle 0* for the desired crack extension direction can be obtained,
namcly

~B+ /B —44C

0* = arctan [ - \/ \ 2 ] 27N
2¢

If the inequality 44C > B is valid, then in case of 4 < C relation (28) holds true:

B
0* = Larctan [A —C]' (28)

Equation (28) corresponds to Min {G,] and therefore Max {G,]. Thus, the following
relations have to be fulfilled :
EG, (72(;,

g, S < 29
a0 =% < (29)

Gy oGy,
L B . 30
=% a0 (30)
Further, there exists two other possible cases ; namely for A4 > C and B > 0 the following
is valid
B n
* = larctan| - - 31
0* = Larctan [.»l —C] 5 3n

and for 4 > C and B < 0 it follows that
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Fig. 5(a) and (b). Finite clement meshes used for crack path prediction.
B n
0* = larctan| ——— =. 32
2 ival R (32)

After getting this new crack extension direction * a new start of the iteration scheme can
be again performed. After a few reiterations of the steps | and 2 the procedure can be
stopped if the new angle 8* ncarly equals 0, the former used to calculate the coefficients A,
B, C. Then also the energy release rate G, reaches approximately the value zero, and
therelore this caleulated angle corresponds to the new crick propagation angle.

3.2. Thermal crack path prediction in self-stressed two-phase compounds
This crack growth criterion established in the previous chapter has been used for the
prediction of curvilinear thermal crack paths originated in different shaped two-phase
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Fig. 6(a)-(c). Comparison of numerically and experimentally obtained crack paths in different
thermally loaded two-phase compounds.
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composite structures subjected to uniform and nonuniform temperature loadings. respec-
tively. Usually four to eight tterations have to be pertormed in order to get the new crack
propagation direction. Figure Sa and b shows two examples of finite element meshes used
for the crack path prediction described earlier. Further, an automatic control program was
generated in order to evaluate energy release rates G, (7 = [, I) according to eqns (20) and
{21) and to judge the iterations so that, after reaching the given tolerance. a new propagation
step starts continuously. After execution of this computational program curved crack paths
predicted numerically have been obtained. Figure 6a-¢ shows a comparison of numerically
predicted crack paths with curvilinear thermal crack paths gained from associated cooling
experiments for different shaped two-phase composite structures subjected to a uniform
temperature distribution. The numerically and experimentally obtained crack paths show
an excellent agreement.

3.3, Determination of fracture mechanical data

Figure 7a-d gives the energy release rate G = G, as a function of crack length «
corresponding to the crack paths shown in Fig. 6a-d and calculated numerically according
to formulac (20) -(22).

Finally. Fig. 8 gives a comparison of numerically and experimentally obtained stress
intensity tactors K, (f = 1. 11y at the tp of a curvilincar thermal crack in a selt-stressed
Araldite B'ABS composite structure (geometrical parameters: R =73 mm, ( = 5 mm)
subjected to a uniform temperature distribution A7 = —40 K. It can be scen that the
quasistatic extension of this curved thermal crack oceurs essentially under Mode [ oading.
Further, 1t should be mentioned that Tor selt-stressed two-phase compounds with a cracked
glassy segment, for instance for the compound structure Glass (SEH)/Aluminum, a photo-
clastic thermal crack analysis has been performed by using the image analysis of photoclastic
fringes as well as the so-called multiplication method ol isochromatic fringe loops.
Morcover, a computer program for the determination ol stress intensity factors K, (f = /,
11y was developed by consideration ol the so-calted multiparameter method (Ferber et al.,
1990). The comparison ol the experimental results obtained from cooling experiments and
the numerical results gained by assoctated finite clement computations showed again a
satisfying agreement.

20
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0 20 Y 60
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Fig. 8. Comparison of numerically and experimentally gained stress intensity factors K, () = 1. 1])
at the tip of a curvilinear thermal crack in an Araldite B'ABS composite structure.
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Fig. 9(a)~(f). Positions of the additional local temperature change in the cross-section of the
composite structure Araldite B/ABS.

1803



[304 K. P. Herrmany and M. Dong

4. CRACK PATH PREDICTION AND CALCULATION OF STRESS INTENSITY FACTORS
CONCERNING THERMAL CRACKS ARISING IN SELF-STRESSED TWO-PHASE COMPOUNDS
SUBJECTED TO NONUNIFORM TEMPERATURE DISTRIBUTIONS

In this section cracked two-phuase compounds are studied subjected to special non-
untform temperature distributions. Thereby the intluence of very restricted local tem-
perature changes on the thermal crack growth as well as on the values of the corresponding
fracture mechanical data at the ups of curvilinear thermal cracks arising in self-stressed
two-phase solids was investigated. Further, this non-uniform temperature distribution
applied to these composite structures 1s composed in such a way that on the basis of a
uniform temperature load applied to the whole cross-section of a two-phase compound
additional local temperature changes AT* 2 0 acting inside of a small circular region with a
radius of 7* = 1.2 mm have to be added. The locations of these additional local temperature
changes in the cross-section of a self-stressed composite structure (Araldite B'ABS) are
shown in Fig. 9 with the following abbreviations:

H: homogencous temperature distribution. AT = -40 K ;

Ay, By, Cy. Dy additional temperature rise with AT* = 100 K in the vicinity of the
points A, B, C. D before thermal crack initiation ;

Av. By, Ci. Dy additional temperature drop with AT* = — 100 K in the vicinity of
the points 4. B, C. D before thermal crack iitiation

C3. D additional temperature rise with AT* = 100 K in the vicinity of the points
C*, D* after arrival of the thermal crack at these points;

C3 DY additional temperature drop with A7T* = — 100 K 1n the vicimity of the points
¥, D* after arrival of the thermal crack at these points,

All of these cases have been studied by appropriate finite clement caleulations by using the
proposed crack growth criterton of Scection 3 as well as Irwin’s modilied crack closure
integral tor the determination of fracture mechamceal data. Figures 1015 show the crack
paths and corresponding stress intensity factors A, at the tips of quasistatically extending
thermal cracks due to the influence of a uniform temperature distribution as well as of
additional focal temperature changes AT™ acting in the cross-section of a thermally loaded
composite structure Araldite BUABS.

The influence of the tocal temperature changes AT* cither on the curvilinear thermal
crack paths or on the stress intensity fuctors K, at the corresponding crack tips can be
observed in Figs 10 15, Because of the very restricted size of the regions of additional local
temperature changes there arise only relatively small differences between the results of the
uniform and nonuniform temperature distributions. respectively. Now from the numerical
results shown in Figs 10 15 the following conclusions about the cffects of additional
local temperature changes AT™* in the cross-section of a self-stressed two-phase composite
structure can be made.

(a) The closer the crack tip lies to a center of an additional local temperature change
AT™*, the greater is the influence of this center on the thermal crack path as well as on the
fracture mechanical data at the corresponding crack tip.

(b) I{ the center of an additional local temperature change lies just in the prospective
thermal crack path obtained for a uniform temperature distribution, then the new crack
path almost remains the same.

(¢) If the center of an additional local temperature change lies outside of the prospective
thermal crack path gained for a uniform temperature distribution, the new crack path
shows the tendency to approach a center of local temperature rise whereas, there exists an
inclination of the crack to bypass a center of local temperature drop.

(d) If the center of an additional local temperature change lies in a certain distance
ahead of a thermal crack tip. either outside of or on the prospective crack path, then the
corresponding fracture mechanical data at the crack tip will be increased in the case of an
additional local temperature risc and will be decreased in the case of an additional local
temperature drop. On the contrary. if the center of an additional local temperature change
lies in a certain distance behind of a thermal crack tip, then the inverse effects occur
concerning the fracture mechanical data.
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Fig. 10. Crack paths and stress intensity factors K, in the cases of Ag. As and H. (a) Crack paths.
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5. CONCLUSIONS

The crack path prediction of thermal cracks in self-stressed two-phase composite
structures subjected to uniform and non-uniform temperature distributions, respectively,
has been investigated by using the finite element method as well as by applying an appro-
priate crack growth criterion. The latter is based upon the numerical calculation of the
energy release rates at the corresponding thermal crack tips and predicts a further crack
extension in the direction in which G,, equals zero. A series of different cracked two-phase
composite structures subjected to uniform as well as nonuniform temperature distributions,
respectively. has been studied by using the crack growth criterion mentioned above. Thereby
thermal cracks always arise on the side of Max [x’AT"”, J = I, Il] in the corresponding
self-stressed two-phase solids starting from the intersection point of the material interface
" with the external surface S. A comparison of the numerically obtained results in case of
the existence of a uniform temperature distribution in the cross-sections of two-phase
compounds for both the thermal crack paths and the corresponding fracture mechanical
data at the crack tips with the experimental results gained from associated cooling exper-
iments showed a good agreement.

In addition, the influence of very restricted local temperature changes AT* onto the
prospective thermal crack paths has been studied by means of the crack growth criterion
already mentioned as well as by using the finite element method. Thereby some remarkable
effects of interference between the centers of local temperature changes located in the
vicinity of the tips of thermal cracks and their further crack paths could be stated. This
interference is also obscrvable concerning the corresponding fracture mechanical param-
cters at the tips of the arising curvilinear thermal cracks.
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